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There Are No Nice Interfaces in ( 2 +  1)-Dimensional 
SOS Models in Random Media 
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We prove that in dimension d~< 2 translation-covariant Gibbs states describing 
rigid interfaces in a disordered solid-on-solid (SOS) cannot exist for any value 
of the temperature, in contrast to the situation in d~> 3. The proof relies on an 
adaptation of a theorem of Aizenman and Wehr. 
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1. I N T R O D U C T I O N  

In this note we want to conclude our analysis of the properties of interfaces 
in random environments by complementing our proot ~2~ of the existence of 
Gibbs measures describing rigid interfaces in the SOS model with random 
surface tension (at low temperatures and weak disorder) in dimension d>~ 3 
by showing that, on the contrary, in dimension d~< 2, such Gibbs states 
cannot exist at any temperature as soon as there is any disorder present. 
In contrast to the technically rather involved existence proof, the proof  
of the converse statement is simple; in fact, it is a fairly straightforward 
application of a beautiful theorem of Aizenman and Wehr t~ which they 
used to prove the uniqueness of the Gibbs state in the two-dimensional 
random-field Ising model. For  an extensive discussion of the history of the 
problem we refer to the introduction of our previous paper. ~2~ 
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The model we consider is defined as follows. A surface is described by 
Z-valued variables h,. ~ Z, x ~ Z a. The Hamiltonian is given (formally) by 

~ ( h ) =  ~ Ih,---h. , , l+e~l . , . (k)~h, .=k (1.1) 
( x , y>  x ,k  

where {qx(k)}.,.~z~.k~z is a family of independent identically distributed 
random variables on some abstract probability space (t2, ~ ,  P), with non- 
degenerate distribution P. We assume that E[rL,.(k) ] =0 ,  E[qx(k) 2] = 1, 
where E denotes the expectation w.r.t, the distribution P. As a matter of 
fact, our result will apply to a far more general class of Hamiltonians, but 
we stick to the specific example for clarity. In ref. 2 we proved that under 
suitable conditions on the temperature and on the distribution P, for d ~> 3, 
infinite-volume Gibbs states It,v for this model can be constructed as weak 
limits of finite-volume Gibbs measures, where the heights on the boundary 
were set to a fixed and constant value H. This reflected the fact that ground 
states of the Hamiltonian with such boundary conditions tend to be mostly 
fiat interfaces with only rare and localized fluctuations provoked by some 
large deviations of the random fields. In lower dimensions this is not 
expected to be the case; rather, on the basis of the Imry-Ma argument, ~4) 
fluctuations are expected to grow without bounds as the volumes increase, 
resulting in the fact that in the limit as the volume tends to infinity, the 
probability to observe the interface near the center of the volume at any 
given height should tend to zero, meaning that an infinite-volume Gibbs 
state does not exist. We want to prove a result that reflects this expectation. 

To this end we define, following Aizenman and Wehr, ('~ the random 
equivalent of translation-invariant Gibbs states, namely translation- 
covariant Gibbs states. Let us first note that in the context of random 
systems, the corresponding random Gibbs measures are most naturally 
viewed a Gibbs-measure-valued random variables on the space (I2, ~ ,  P), 
i.e., a measurable map from (I2, ~ )  into the space of Gibbs measures on 
the measure space of the dynamical variables, in our case (Z za, ~) ,  where 
7/Za is equipped with the product topology of the discrete topology on Z 
and ~ is the corresponding finitely generated sigma-algebra (a recent 
exposition on some formal aspects of random Gibbs measures is given in 
ref. 6). 

D e f i n i t i o n  1. (l) A random Gibbs state p(1?) is called translation 
covariant iff it satisfies, almost surely, (i) 

p((~A(h) + A~A(h), r/A~(h))h ~ z)(- ) 

p((r/A(h), r/,~,.(h))h ~ z)(-exp( --fie E.,-~,, Aqx(hx))) 
(1.2) 

- p(OlA(h), qA4h))/,~z)(exp( --fie )Z.~A Arlx(hx))) 
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for any finite-volume perturbation AqA(h) of the random fields; and (ii) 

/t((q.,.+.,,(h)).,.~z,.i,~z)(f(h.,-),.~z,I) 

= /t( (q.,.( h ) ),.~Z,.h~z )(f( h,._ y) ,.~za) (1.3) 

for all y E Z d. 

Let us note that if one translation-covariant Gibbs state, say/t  0, exists, 
than there exists an infinite family of them, / t~ ,  for all H e  Z, where 

/t H( (q.,.( h ) ) ,.r h~z)(f(  h.,.).,-~Z,I) 

= go((q.,.(h + H)).,.~z,%~z)(f(h.,. + H) ,., z,i) (1.4) 

We will prove the following theorem: 

Theorem 1. Suppose that the distribution P of qx(h) either (i) has 
�9 no isolated atoms or (ii) has compact support; then, if d~< 2, e # 0, for all 
fl < oo, the SOS model defined through (1.1) does not permit translation- 
covariant random Gibbs states. 

Remark. Translation-covariant Gibbs states are the nice things one 
expects to get as weak limits with simple boundary conditions, which in 
particular should not be too knowledgeable of the disorder. In particular, 
property (1.2) can only be violated i f / t n  was constructed as a weak limit 
with boundary conditions that depended on the random fields in the finite 
set A. It is quite conceivable that rather artificial Gibbs states violating the 
conditions (1.2) and (1.3) can be constructed in this model. For  example, 
it might be possible to choose a sequence of volumes A,,TZ a and a 
sequence of random boundary conditions carefully in such a way as to 
ensure that the corresponding ground states have height h o = 0  at the 
origin. It is conceivable that such a sequence of measures could converge, 
but clearly they are "physically" irrelevant. 

R e m a r k .  To prove Theorem 1 we will show that the assumption of 
translation-covariant Gibbs states leads to a contradiction. One might 
hope that a more direct approach based, e.g., on the renormalization group 
method could also work and give more precise information on finite- 
volume quantities. Such an approach, however, appears to be exceedingly 
difficult. In ref. 5 a result on the absence of stable interfaces based on that 
idea was proven, but only in a specific mean-field-type limit of a hierarchi- 
cal model. The reader may find it instructive to study that paper, since it 
hints at the complexities occurring in the problem. 
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2. PROOF OF THE THEOREM 

We will show that the assumption that there exist translation- 
covariant states in d ~ 2 leads to a contradiction. Having realized what it 
is that we want to prove, the adaptation of the arguments of Aizenman and 
Wehr to our situation is almost trivial. To do so, we define the "order 
parameters" 

M ( h ,  h ' )  - n:[~o(hx = h ) ]  - n:[/~0(hx = h ' ) ]  (2.1) 

The point here is that tf  these quantities vanish, than then we have the 
following contradiction: 

l=~ :  ~, k to(hx=h)= ~ ~4to(hx=h)= ~, ~:/.to(hx=h' ) 
h E Z  h ~ Z  h ~ Z  

(2.2) 

for any h'. In fact, if h* denotes any value for which ~uo(h., .=h*)>0, to 
arrive at the same contradiction it is enough to show that there exists an 
infinite number of values h such that M(h*, h) = O. 

Thus to prove the theorem, we only have to show that this is the case. 
Let us define, for fixed h, H, fl, and finite volume A, the generating 
functions 

FA(h,H'=flE[lnpo(exp(flex~. ~l.,-(h.,-))) 

-lnltn(exp(fle .~Arl.~(hx))) ~Aj, 1 (2.3) 

where ~ , h  denotes the sigma-algebra that is generated by the random 
variables {~/A.(h)}.,-~A. Define further the random variable 

rx(h, H) = E[po(h,. = h) -pic(hx = h) [ ~a .h]  (2.4) 

Then we have the following result. 

I . e m m a  1. The functions FA(h, H) and rx(h, H) have the following 
properties: 

(0) We have 

(i) 

r__(h, H)((rL,.+y(h)).,.~ za ) = r~_y(h, H)((rL,_(h))x~a ) 
For all x ~ A 

(2 .5)  

0 
0~L,.(h) FA(h, H) = eEErx(h, H) I ~ , h ]  (2.6) 
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(ii) We have 

E[ L,.(h, H)]  = M(h, h - H) (2.7) 

(iii) For all positive fl and 

Irx(h, n) l  ~< 1 (2.8) 

and 

(iv) We have 

Proof. 

O •  r,.(h, H) <~e--fl 4 (2.9) 

EEFA(h, H)]  = 0  (2.10) 

(2.5) follows from (1.3). Equation (2.6) follows from (1.2). 
Equation (2.7) is a consequence of the "covariance w.r.t, height shift" 
expressed by (1.4). The bound (2.8) is obvious. To prove (2.9), just note 
that 

a 
ar/x(h ) rx(h, H) 

= #~ E[/~0(h,- = h) -/~0(hx = h) 2 - / zn (hx  = h) + / ~ ( h x  = h)21 ~z~ h] 

(2.11) 

(2.10) follows again from (1.4). | 

Lemma 1 ensures that we are in the situation of ref. 1, Proposition 6.1, 
which allows us to bound the fluctuations of F:j(h, H) from below. In par- 
ticular we have from Proposition 6.1 

lim inf E[exp(tl-'A(h,H)/~'-(-Al)]>lexp(~) (2.12) 
A = [ - - L . L ] a , L ' f  ac, 

where [see ref. 1, Eq. (6.24)] 

b2>~ ~_[E[1-'A(h, H) I ~oj,] 2] (2.13) 

We distinguish the cases (i) and (ii) in the hypothesis of our theorem. In 
case (i), Eq. (A.3.2) and Proposition A.3.2, case (ii), of ref. 1 immediately 
give that 

b >t eOp(M(h, H), 1/(~fl)) > 0 (2.14) 

if M( h, H) :~ O. 
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Under the assumption of case (ii), we show the following. 

I.emma 2. Let h* be such that Ego(hx=h*)>0 .  Then there exists 
Ho < oo such that for all H~> Ho 

b >1 eyp(M(h*, H), 1/(eft)) > 0 (2.15) 

if M(h*, H) v~ O. 

Proof.. From Proposition A.3.2, case (iii), of ref. I, condition (2.15) 
follows if the function 

r/o(h* ) ~--~ g(r/o(h*)) -- E[ F(h, H) [ ~oj,. ](r/o(h*)) 

is monotone for all ~/o(h*) e [A, B], where [A, B] is the convex hull of the 
support of the one-field distribution P. 

To prove the monotonicity, we proceed as follows. From (2.6)-we get 

Og , 
0r/o~*) =eEEr,.(h , n )  l~o,,,*] 

=eE[#o(h.,.=h*)l~o.h.] -eE[#u(h, .=h*)l~o.h.] (2.16) 

It is easy to see that (1.3) implies the deterministic bounds 

5 ,  exp( - 2fle( B - A ) ) 

<~ ~:_[#,(h,.=h*)[~o.h.](r/o(h*)) <...5,exp(2fle(B-A)) (2.17) 

for all ~/o(h*) �9 [A, B],  where 5 , =  E[#,(hx=h*)].  Since 

5 , =  ~ E [ # o ( h x = h * - H ) ] = l  (2.18) 
H e Z  H e Z  

there exists Ho such that 5,<~5o exp(--4f le(B--A))  for all H~> Ho. This 
implies by (2.16) the desired monotonicity for all H>~ H o. II 

To conclude the proof of the theorem, we thus only have to show that 
(2.9) with b2> 0 leads to a contradiction. This relies on the following 
lemma: 

I .emma 3. We have 

Is n)l  ~< Inl" IOAI (2.19) 

where 10hi = I { (x , y ) l xeA ,  y e a  c, [Ix--Yll2 = 1}1. 

In fact, (2.19) implies 

laAI "~ ~_[exp(tFA(h, H)/Ix//~)] ~<exp (Itl" Inl (2.20) 
\ 
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which contradicts (2.12) if A is chosen as, e.g., a d-dimensional cube and 
d~< 2. This concludes the proof of the theorem, if we assume Lemma 3. | 

To conclude, we prove Lemma 3. 

Proof of Lemma 3. We focus on one summand in (2.2) and write 

=-E[lnl.tl~((O,~,tl,~,.(h))h~z)(exp(-flex~,4tl.,_(h,.))) ~ l 

=-~-[lnpo((O,,,rl,~"(h))h~z)(exp(-fle .~, rl.~(h.,-+H))) o~.h] 
(2.21) 

where the first equality is due to the transformation law (1.2) w.r.t, local 
perturbations, the second to the stationarity of the distribution of the 
random fields under the shift h,. ~ h.,_ + H for x E A c, and the third to (1.4). 

Let us now employ the DLR equations r to write 

h~l E Z "j ( x ,  y )  
X,) 'EA 

( x , y )  xE.,! 
x ~ A , ) , ~ A  c 

E ( )]' x ~ exp - f l  ~ [ h x - h : , ] - f l  ~ [h,.-h:,[ (2.22) 
h , j ~ Z  'j ( x  v)  ( x ,  v)  

x, y E A  .x'~ A , y ~ A  r 

Note that only the numerator is H dependent. Therefore we introduce 
hl, .=h., .+H for x eA, and estimate the boundary term in the 'surface 
energy' in the exponential in the numerator uniformly by 
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Ih.,.- fig I = ~ lhl,. -/~.,, - HI 
<x,y> <x,y> 

x e A , ) , ~ A  c . x -cA.  y e A  c 

<. E 
<x,y> 

x e A , ) , ~ A  v 

and 

Ihi,.-,~,, I + IHI. 10A[ (2.23) 

Z Ih,--fiyl i> Z Ih'x-fi.,,I-IHI. 10AI (2.24) 
<x,y> <x,y) 

x E  A .  ) , ~  A r x ~ . ' | ,  ) , ~  A r 

From this we have 

e x p ( - f l  ~ [h. ,_-hyl-fl  ~ [hx-]~yl-flc~rl.,_(h~.+H)) 
h.ieZ A <x,y) (x  v> x~,,! 

x . ) , E A  x e A ,  y e A  c 

/ 
<-..exp(fllnl.lOAI) ~ e x p ( - f l  ~ Ihl,--h'yl 

h' z e Z" \ < x, y > 
X , ) ' E A  

-fl ~ Ih'x-f%,l-fle ~ r/.,.(hi,.)/ (2.25) 
<x,y> x e A  / 

. v ~ A . y c i A  c 

and a similar lower bound. Substituting these bounds in (2.12) and com- 
paring the H =  0 term gives (2.10) directly. | 

To summarize the gist of the proof, Lemma 3 roughly states that 
when we deform an interface aver a local region A by shifting it up by a 
distance H, then this 'costs' no more than to build a boundary wall, i.e., 
H 10LI. On the other hand, the Aizenman-Wehr theorem says that there 
are always regions where such a price is compensated by a corresponding 
gain in random energy. In that sense, the proof really builds along the 
Imry-Ma argument. On the other hand, we see that to make this argument 
rigorous, one has to proceed quite carefully in order to avoid possible 
pathologies that could be produced by very 'exotic' constructions of Gibbs 
states. This somewhat restricts the generality of our statement (namely that 
we only exclude translation-covariant Gibbs states rather then 'any' Gibbs 
states), but such a restriction does not appear physically unreasonable. 
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